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LONGITUDINAL–TRANSVERSE BENDING OF LAYERED BEAMS

IN A THREE-DIMENSIONAL FORMULATION

UDC 531.3+539.3G. L. Gorynin1 and Yu. V. Nemirovskii2

Three-dimensional equations of the elasticity theory for layered beams are solved by the method of
asymptotic splitting without additional hypotheses or restrictions.
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Introduction. The problem of calculation of multilayer structures is important because advanced technolo-
gies allow fabrication of structural elements made of dissimilar materials. Methods for calculating multilayer beams
and plates have been rather adequately developed; the most significant works have been reviewed and analyzed,
e.g., in [1, 2]. In most papers, special attention was paid to approximate allowance for cross-sectional shear in the
plane of the load applied, transverse reduction of the layers and other types of shear being neglected. Appropriate
three-dimensional equations were reduced to one- or two-dimensional equations by using piecewise-linear or power
expansions of transverse shear stresses and displacements over the transverse coordinate. In many cases, however,
the properties of materials can be so disparate that the remaining components of stress and strain tensors cannot be
neglected. Materials differ from each other not only in rigidity but also in strength. For layered beams, therefore, it
is necessary to have reliable information on stress fields in each layer. A method of asymptotic splitting, which does
not require any significant assumptions or restrictions, is proposed in the present paper to solve three-dimensional
equations of the elasticity theory for the case of bending of layered beams. This method was used previously to
solve particular problems in [3–5].

1. Transverse Bending. Let us consider a beam with an arbitrary cross section constant over the length
and symmetric with respect to the x axis; the beam consists of an arbitrary number of layers made of different
materials (Fig. 1). The origin is on the upper surface of the beam; the layers are enumerated from top to bottom
(i is the number of the current layer and s is the number of layers).

The quantities u, v, and w are the displacements of points in the x, y, and z directions, respectively, b− and
b+ are the widths of the upper and lower surfaces of the beam, u∗ is the characteristic value for the displacement u,
l and h are the length and height of the beam, respectively, λi and νi are elastic constants, εαβ are the components
of the linear strain tensor, λ0 is the characteristic value of the elastic constant, and q− and q+ are the transverse
loads applied to the upper and lower surfaces of the beam, respectively. We consider only beams for which ε = h/l

is a small parameter. We use the following dimensionless variables and functions:

x′ =
x

h
, y′ =

y

h
, z′ =

z

l
, u′ =

u

u∗
, w′ =

w

u∗
, v′ =

v

u∗
, λ′i =

λi

λ0
,

µ′i =
µi

λ0
, σ′αβ =

σαβ

σ0
, q′+ =

q+

q0
, q′− =

q−
q0

, σ0 =
λ0u

∗

h
.

In what follows, the prime marking dimensionless quantities is omitted. We do not use the hypothesis of flat sections
and use the following approximations for displacements in each layer:
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Fig. 1. Longitudinal–transverse bending of a layered beam.
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n∑
k=0

Uz
i,k

d(2k+1)u
(n)
0

dz(2k+1)
ε2k+1, Uz

i,0 = −(x− c0), Ux
i,0 = 1,

u
(n)
i (r, ε) =

n∑
k=0

Ux
i,k

d2ku
(n)
0

dz2k
ε2k, v

(n)
i (r, ε) =

n∑
k=1

Uy
i,k

d2ku
(n)
0

dz2k
ε2k.

(1)

Here r is the radius vector of a point, u
(n)
i (r, ε) is the approximation of the displacement vector, c0 is a constant,

n is the ordinal number of the approximation, and Uz
k (x, y), Ux

k (x, y), and Uy
k (x, y) are the characteristic functions

of the vector field of displacements in the beam cross section. We define the bending function u
(n)
0 (z) as

u
(n)
0 (z) =

1
F

s∑
i=1

∫
Fi

u
(n)
i (r) dF,

s∑
i=1

∫
Fi

Ux
i,k(x, y) dF = 0 (k = 1, . . . , n),

where F is the cross-sectional area of the beam and Fi is the area of the ith layer of the beam cross section.
The beam material obeys Hooke’s law:

(σαβ)i = λiθδαβ + 2µiεαβ , θ =
3∑

γ=1

εγγ , λi =
νiEi

(1− 2νi)(1 + νi)
, µi =

Ei

2(1 + νi)
. (2)

We substitute equalities (1) into Hooke’s law (2):

(σαα)(n)
i =

n∑
k=1

(ταα)(2k)
i

d2ku
(n)
0

dz2k
ε2k + (λi + 2µiδαz)Uz

i,n

d2n+2u
(n)
0

dz2n+2
ε2n+2, α ∈ [x, y, z],

(σxy)(n)
i =

n∑
k=1

(τxy)(2k)
i

d2ku
(n)
0

dz2k
ε2k, (σβz)

(n)
i =

n∑
k=1

(τβz)
(2k+1)
i

d2k+1u
(n)
0

dz2k
ε2k+1, β ∈ [x, y]

(3)

(δαz is the Kronecker delta). Formulas (3) contain characteristic functions of the tensor fields of stresses in the
beam cross section (ταβ)(j)i , which are related to the characteristic functions of the vector field of displacements as
follows:

(τzz)
(2k+2)
i = (λi + 2µi)Uz

i,k + λi

(∂Ux
i,k+1

∂x
+

∂Uy
i,k+1

∂y

)
, (τxz)

(1)
i = 0, (τyz)

(1)
i = 0,
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(τxy)(2k)
i = µi

(∂Uy
i,k

∂x
+

∂Ux
i,k

∂y

)
, (τβz)

(2k+1)
i = µi

(
Uβ

i,k +
∂Uz

i,k

∂β

)
, β, γ ∈ [x, y], γ 6= β,

(τββ)(2k+2)
i =

(
λi

(
Uz

i,k +
∂Uγ

i,k+1

∂γ

)
+ (λi + 2µi)

∂Uβ
i,k+1

∂β

)
, i = 1, . . . , s, k = 1, . . . , n.

We assume that the transverse loads on the upper and lower surfaces have the form

q− =
n∑

k=1

q
(2k)
−

d2ku
(n)
0

dz2k
ε2k, q+ =

n∑
k=1

q
(2k)
+

d2ku
(n)
0

dz2k
ε2k, q

(2)
− = q

(2)
+ = 0,

q = b−q− + b+q+, q =
n∑

k=1

q(2k) d2ku
(n)
0

dz2k
ε2k,

(4)

where q
(2k)
− , q

(2k)
+ , and q(2k) (k = 2, . . . , n) are constants and q is the total transverse load.

We write the equilibrium equations in the form

Lx,i(u, ε) = 0, Ly,i(u, ε) = 0, Lz,i(u, ε) = 0. (5)

The following boundary conditions are used:
— on the upper surface for x = 0,

Jx,1(u, ε) = 0, Jy,1(u, ε) = 0, Jz,1(u, ε) = 0;

— on the lower surface for x = 1,

Jx,s(u, ε) = 0, Jy,s(u, ε) = 0, Jz,s(u, ε) = 0; (6)

— on the side surface,

Bx,i(u, ε) = 0, By,i(u, ε) = 0, Bz,i(u, ε) = 0.

We use the following conjugation conditions at the interface between the beam layers:

Φx,i(u, ε) = 0, Φy,i(u, ε) = 0, Φz,i(u, ε) = 0,

Sx,i(u, ε) = 0, Sy,i(u, ε) = 0, Sz,i(u, ε) = 0, x = hi, i = 2, . . . , s.
(7)

We use the following differential operators acting on the displacement vector u in Eqs. (5)–(7):

Lβ,i(u, ε) =
∂ (σβx)i

∂x
+

∂ (σβy)i

∂y
+ ε

∂ (σβz)i

∂z
, Jx,1(u, ε) = (σxx)1 + q−,

Jy,1(u, ε) = (σxy)1, Jz,1(u, ε) = (σxz)1, Jx,s(u, ε) = (σxx)− q+, Jy,s(u, ε) = (σxy)s,

Jz,s(u, ε) = (σxz)s, Bβ,i(u, ε) = (σβx)inx + (σβy)iny, Φx,i(u, ε) = (u)i−1 − (u)i,

Φy,i(u, ε) = (v)i−1 − (v)i, Φz,i(u, ε) = (w)i−1 − (w)i, Sx,i(u, ε) = (σxx)i−1 − (σxx)i,

Sy,i(u, ε) = (σxy)i−1 − (σxy)i, Sz,i(u, ε) = (σzx)i−1 − (σzx)i, β ∈ [x, y, z].

Definition 1. The problem of finding the displacement field u satisfying Eqs. (2) and (5)–(7) inside the
beam and at its boundary, will be called the semi-boundary problem because there are segments of the beam
boundary (its end faces) where no boundary conditions are temporarily imposed.

Definition 2. Let the differential equation L(u(r), ε) = 0 be given. The functional sequence {u(n)(r)}∞n=1

will be called the formal asymptotic solution of this equation if there exists a monotonically increasing function m(n)
such that the equality L(u(n)(r), ε) = O(εm(n)) is satisfied for all n as ε → 0. If a similar equality is satisfied for
some boundary conditions or all of them, we will speak about the formal asymptotic solution of the semi-boundary
or boundary problem, respectively.

We require satisfaction of equalities for the characteristic functions of the tensor field of stresses and the
associated characteristic functions of the vector field of displacements:
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— inside the cross section,

∂ (τβx)(2k)
i

∂x
+

∂ (τβy)(2k)
i

∂y
+ (τβz)

(2k−1)
i = 0,

∂ (τzx)(2k+1)
i

∂x
+

∂(τzy)(2k+1)
i

∂y
+ (τzz)

(2k)
i = 0; (8)

— on the upper and lower surfaces of the beam,

(τzx)(2k+1)
1 = 0, (τxy)(2k)

1 = 0, (τxx)(2k)
1 = −q

(2k)
− , k = 1, . . . , n, x = 0,

(τxx)(2k)
s = q

(2k)
+ , (τzx)(2k+1)

s = 0, (τxy)(2k)
s = 0, k = 1, . . . , n, x = 1;

(9)

— on the side surface of the beam,

(τβx)(2k)
i nx + (τβy)(2k)

i ny = 0, β ∈ [x, y], (τzy)(2k+1)
i ny + (τzx)(2k+1)

i nx = 0; (10)

— at the interface between the beam layers,

(τzx)(2k+1)
i−1 = (τzx)(2k+1)

i , (τxβ)(2k)
i−1 = (τxβ)(2k)

i , Uα
i−1,k = Uα

i,k,

α ∈ [x, y, z], β ∈ [x, y], x = hi, i = 2, . . . , s, k = 1, . . . , n.
(11)

For the first two differential equalities in (4) to be simultaneously satisfied, it suffices to require proportion-
ality of the upper and lower loads:

q
(2k)
+ = kqq

(2k)
− , q+ = kqq−. (12)

Integrating Eqs. (8) over the cross section with allowance for Eqs. (9)–(11), we obtain the necessary condition
for solvability of the boundary problem (8)–(11):

q(2k) = −I(2k−2), I(2k) =
∫
F

(x− c0)(τzz)(2k) dF. (13)

Summing up the first two equalities in (4) multiplied by b− and b+, respectively, we obtain a differential
equation equivalent to the initial equalities (4) because of load proportionality:

n∑
k=2

I(2k−2)
d2ku

(n)
0

dz2k
ε2k + q = 0. (14)

By forward substitution, we can readily verify that formulas (1) yield a formal asymptotic solution of the
semi-boundary problem (5)–(7) if the condition ε4 d2n+2u

(n)
0 /dz2n+2 = O(1) is satisfied as ε → 0. The latter

equality is reached if we eliminate rapidly oscillating solutions as ε → 0 in solving the differential equation (14).
Actually, this condition means identification of a four-parameter family of solutions of Eq. (14):

u
(n)
0 (z, ε) = a0 + a1z + a2z

2 + a3z
3 + F(4)(z, ε). (15)

Here aj are parameters and F(4)(z, ε) is a particular “nonoscillating” solution of the equation.
The total number of boundary conditions for the family of solutions (15) at the end faces of the beam is

four. Hence, traditional boundary conditions based on the Saint Venant principle can be used at the end faces: zero
mean displacements u

(n)
0 and bending moment (simply supported beam); zero bending moment and shear force

(free end face); zero longitudinal and transverse displacements on the average (clamped beam).
If the transverse load is a polynomial, we can use forward substitution to prove the following statement.
Statement 1 (about the exact solution of the semi-boundary problem). Let conditions (12) and (13) be

satisfied, formula (15) be valid, and the transverse load q(z) be a polynomial of power m0. Then, functions (1) yield a
four-parameter family of exact solutions of the semi-boundary problem (2), (5)–(7). The number of approximation n

is calculated by the formula n = [0.5(m0 + 4)], where [a] is the integer part of the number a.
Example 1 (one-layer beam with a rectangular cross section under the action of point forces). If the beam

experiences the action of point forces only, in accordance with the statement given above, the second approximation
(n = 2) yields the exact solution, and Eq. (14) yields the equalities

dju0(z)
dzj

= 0, j > 4.
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TABLE 1
b y ∆σzx b y ∆σzx

0.5
0 0.983

2
0 0.856

0.5b 1.033 0.5b 1.396

1
0 0.940

4
0 0.805

0.5b 1.126 0.5b 1.987

TABLE 2
∆u

Type of beam support ε = 0.1 ε = 0.125 ε = 0.167 ε = 0.25

b = 1 b = 4 b = 1 b = 4 b = 1 b = 4 b = 1

Cantilever 1.007 1.021 1.012 1.033 1.021 1.060 1.046
Simply supported 1.030 1.086 1.046 1.134 1.082 1.236 1.184

Clamped at the ends 1.118 1.343 1.184 1.536 1.329 1.957 1.738

If we substitute these equalities into formulas (1) and (3), already the first approximation yields the exact solution
of the semi-boundary problem (2), (5)–(7). By solving the boundary problem (8)–(11) with k = 1, we obtain the
following characteristic functions of the stress tensor for a one-layer rectangular-section beam (b is the beam width):

(τxx)(2) = (τxy)(2) = 0, (τzz)(2) = −E(x− c0),

(τzy)(3) = 4µνb
∞∑

k=1

sinh [(2k − 1)πy]
sinh [(2k − 1)π0.5b]

cos ((2k − 1)πx)
π2(2k − 1)2

+ 2νµy(x− 0.5) + E(0.5(x− 0.5)2 − 0.125). (16)

Using (16), we calculate the displacements and stress-tensor components by formulas (1) and (3). If we average
(σzx)(1) over the cross-section width, formulas (3) and (16) yield the known Zhuravskii’s formula for the cross-
sectional distribution of shear stresses.

We introduce the ratio of shear stresses to their averaged values:

∆σzx =
(σzx)(1)

〈(σzx)(1)〉
=

(τzx)(3)

〈(τzx)(3)〉

(
〈a〉 =

1
b

0.5b∫
−0.5b

a(x, y) dy
)
.

The maximum values of ∆σzx in the beam cross section for x = 0.5 and ν = 0.25 are listed in Table 1. It
follows from the definition of this quantity that it is independent of the method of beam attachment and the number
of point forces applied. The values in Table 1 coincide with the values obtained by Timoshenko for a rectangular-
section cantilever beam [6] loaded by a point force at the end (Saint Venant problem). Hence, Timoshenko’s result
is extended to arbitrarily supported beams with an arbitrary number of point loads.

We introduce the ratio of the maximum values of bending obtained by the method proposed to the maximum
bending obtained on the basis of Bernoulli’s hypothesis of flat sections uB:

∆u = u
(1)
0 /uB.

The values of ∆u for beams under the action of a unit point load for ν = 0.25 are listed in Table 2. In all examples
considered, this ratio is greater than unity.

It should be noted that the action of point forces applied away from the end faces is manifested in cutting
the beam over the section where the point load is acting. Then, these two parts are conjugated with the use of
integral conditions at the end faces, which is possible owing to the Saint Venant principle. Therefore, there is always
an error near the point of action of the point force, which is typical of the beam theory. This error can be taken
into account and corrected only on the basis of constructing boundary layers [7].

Example 2 (plane deformation of a three-layer beam). Let us consider a three-layer beam of unit width
(b = 1) loaded at the upper surface by a transverse distributed load q− (kq = 0). We assume that the layers have the
following parameters: E2 = 1, E1 = E3 = 4E2, ν1 = ν2 = ν3 = 0.3, h2 = 0.33, and h3 = 0.67. The characteristic
functions of the displacement vector and stress tensor are shown in Figs. 2 and 3. The stresses σzz are an order of
magnitude greater than the stresses σxx, as it follows from the diagrams of the characteristic functions τzz and τxx.
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Fig. 2. Characteristic functions of the stress tensor for the three-layer beam (E1 = E3 = 4E2 and

ν1 = ν2 = ν3 = 0.3): (a) normal functions (τzz)
(2) (1), (τzz)

(4) (2), and (τxx)(4)) (3); (b) tangential

functions (τzx)(3) (1) and (τzx)(5) (2).
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Fig. 3. Characteristic functions of the displacement vector for the three-layer beam (E1 = E3 = 4E2

and ν1 = ν2 = ν3 = 0.3): (a) longitudinal functions Uz
i,0 (1), Uz

i,1 (2), and Uz
i,2 (3); (b) transverse

functions Ux
i,1 (1) and Ux

i,2 (2).

The solutions obtained on the basis of the above-formulated statement for one- and three-layer cantilever
beams coincide with the solutions obtained with the use of the Airy functions (see [6, 8]).

Thus, reduction can be neglected in the present case. In the general case of calculating layered beams,
however, it is impossible to a priori neglect these or those components of the stress tensor because their values can
depend on the geometric size of the layers, mechanical characteristics of structural materials, and positioning of
materials in the structure.

Example 3 (plane deformation of a two-layer cantilever beam). Let us consider a two-layer cantilever beam
of unit width (b = 1) loaded at the upper surface by a constant transverse distributed load q− (kq = 0). We
assume that the layers have the following characteristics: the lower layer is steel (E2 = 200 GPa and ν1 = 0.33);
the upper layer is graphite (E1 = 5.9 GPa and ν1 = 0.3) or concrete (E1 = 20 GPa and ν1 = 0.2). The upper
layer thickness takes the values ∆h1 = 0.05, 0.1, and 0.2. Table 3 contains the values of |σzz/σxx| calculated in the
origin (upper point of the built-in section) where the axial tensile stresses σzz in the upper layer have the maximum
values. Obviously, if this ratio is close to unity or smaller than unity, reduction cannot be neglected. It follows from
the analysis of Table 3 that the necessity of taking reduction into account depends on the properties of materials,
relative thicknesses of the layers ∆h1, and relative longitudinal size of the beam ε. The axial stresses decrease with
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TABLE 3
|σzz/σxx|

ε ∆h1 = 0.05 ∆h1 = 0.1 ∆h1 = 0.2

Graphite Concrete Graphite Concrete Graphite Concrete

0.100 0.5 2.6 0.7 3.2 1.3 4.8
0.125 0.2 1.5 0.3 1.9 0.7 2.9
0.167 0.1 0.7 0.03 0.9 0.2 1.5

distance from the built-in face, whereas the value of σxx remains unchanged; hence, the relative contribution of
reduction increases.

2. Longitudinal–Transverse Bending. Let the upper and lower surfaces of the beam be affected, in
addition to the transverse load, by a longitudinal distributed load p−, p+. We use the following approximations for
the displacements in each layer:

w
(n)
i =

n∑
k=0

W z
i,k

d2kw
(n)
0

dz2k
ε2k, u

(n)
i =

n∑
k=1

W x
i,k

d(2k−1)w
(n)
0

dz(2k−1)
ε2k−1, W z

i,0 = 1,

v
(n)
i =

n∑
k=1

W y
i,k

d(2k−1)w
(n)
0

dz(2k−1)
ε2k−1, u

(n)
i (r) = (u(n)

i , v
(n)
i , w

(n)
i ).

(17)

Here w
(n)
0 (z) is the function of the longitudinal section of displacements and W z

i,k(x, y), W x
i,k(x, y), and W y

i,k(x, y) are
the characteristic functions of the displacement vector in the beam cross section. We assume that the value of the
longitudinal displacement function w

(n)
0 (z) equals the mean displacement of cross-sectional points in the longitudinal

direction, which corresponds to the equalities
s∑

i=1

∫
Fi

W z
i,k(x, y) dF = 0, k = 1, . . . , n.

Using the expressions for displacements (17) in Hooke’s law, we obtain

(σαα)(n)
i =

n∑
k=1

(ταα)(2k−1)
i

d2k−1w
(n)
0

dz2k−1
ε2k−1 + (λi + 2µiδαz)W z

i,n

d2n+1w
(n)
0

dz2n+1
ε2n+1,

(σxy)(n)
i =

n∑
k=1

(τxy)(2k−1)
i

d2k−1w
(n)
0

dz2k−1
ε2k−1, (σβz)

(n)
i =

n∑
k=1

(τβz)
(2k)
i

d2kw
(n)
0

dz2k
ε2k,

(18)

α ∈ [x, y, z], β ∈ [x, y].

In formulas (18), we used the characteristic functions of the stress tensor (ταβ)(j)i , which are related to the charac-
teristic functions of the displacement vector:

(τzz)
(2k−1)
i = (λi + 2µi)W z

i,k−1 + λi

(∂W x
i,k

∂x
+

∂W y
i,k

∂y

)
, (τzβ)(2k)

i = µi

(∂W z
i,k

∂β
+ W β

i,k

)
,

(τββ)(2k+1)
i =

(
λi

(
W z

i,k +
∂W γ

i,k+1

∂γ

)
+ (λi + 2µi)

∂W β
i,k+1

∂β

)
, (τzβ)0i = 0,

(τxy)(2k−1)
i = µi

(∂W y
i,k

∂x
+

∂W x
i,k

∂y

)
, β, γ ∈ [x, y], γ 6= β, i = 1, . . . , s, k = 1, . . . , n.

We assume that the loads on the upper and lower surfaces have the form

p− =
n∑

k=1

p
(2k)
−

d2kw
(n)
0

dz2k
ε2k, p+ =

n∑
k=1

p
(2k)
+

d2kw
(n)
0

dz2k
ε2k, p = b−p− + b+p+,
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q− =
n∑

k=1

q
(2k−1)
−

d2k−1w
(n)
0

dz2k−1
ε2k−1, q+ =

n∑
k=1

q
(2k−1)
+

d2k−1w
(n)
0

dz2k−1
ε2k−1, q = b−q− + b+q+.

(19)

In the differential operators (7), we take into account the influence of the longitudinal load:

Jz,1(u, ε) = (σxz)1 + p−, Jz,s(u, ε) = (σxz)s − p+. (20)

Then, the semi-boundary problem (2), (5)–(7) is also valid for longitudinal–transverse bending. We require
satisfaction of the following equalities for the characteristic functions of the stress tensor and associated characteristic
functions of the displacement vector:

— on the upper and lower surfaces of the beam,

(τzx)(2k)
1 = −p

(2k)
− , (τxy)(2k−1)

1 = 0, (τxx)(2k−1)
1 = −q

(2k−1)
− for x = 0,

(τzx)(2k)
s = p

(2k)
+ , (τxy)(2k−1)

s = 0, (τxx)(2k−1)
s = q

(2k−1)
+ for x = 1;

(21)

— on the side surface of the beam,

(τβx)(2k−1)
i nx + (τβy)(2k−1)

i ny = 0, (τzy)(2k)
i ny + (τzx)(2k)

i nx = 0, k = 1, . . . , n; (22)

— on the interfaces between the layers,

(τzx)(2k)
i−1 = (τzx)(2k)

i , (τxβ)(2k−1)
i−1 = (τxβ)(2k−1)

i , Wα
i−1,k = Wα

i,k; (23)

— at internal points of the beam cross section,

∂ (τβx)(2k−1)
i

∂x
+

∂ (τβy)(2k−1)
i

∂y
+ (τβz)

(2k−2)
i = 0,

∂(τzx)(2k)
i

∂x
+

∂(τzy)(2k)
i

∂y
+ (τzz)

(2k−1)
i = 0,

α ∈ [x, y, z], β ∈ [x, y], k = 1, . . . , n, i = 1, . . . , s.
(24)

For four differential equalities in (19) to be simultaneously satisfied, it suffices to require proportionality of
the upper and lower loads:

q
(2k−1)
+ = kqq

(2k−1)
− , q+ = kqq−, p

(2k)
+ = kpp

(2k)
− .

If we integrate Eqs. (24) over the cross section with allowance for equalities (21)–(23), we obtain the necessary
condition of solvability of the boundary problem (21)–(24):

q
(2k−1)
+ = −

G(2k−2)

b+ + kqb−
, p

(2k)
+ = −

A(2k−1)

b+ + kpb−
,

G(2k) =
s∑

i=1

∫
Fi

(τxz)
(2k)
i dF, A(2k−1) =

s∑
i=1

∫
Fi

(τzz)
(2k−1)
i dF, k = 1, . . . , n. (25)

A linear combination of the first two equalities in (19) yields the differential equation on the longitudinal
displacement function

n∑
k=1

A(2k−1)
d2kw

(n)
0

dz2k
ε2k + p = 0. (26)

From Eqs. (19) and (25), there follows the equality to be satisfied by the transverse load:

q = −
n∑

k=2

G(2k−2)
d2k−1w

(n)
0

dz2k−1
ε2k−1. (27)

Hence, the total cross-sectional load is not an arbitrarily prescribed function, in contrast to the total longitudinal
load over the section. We denote this transverse load depending on the longitudinal load as qp.

By forward substitution, we can easily verify that Eqs. (17) define a formal asymptotic solution of the semi-
boundary problem (2), (5)–(7), (20) if the condition ε2 d2n+1w

(n)
0 /dz2n+1 = O(1) is satisfied as ε → 0. The latter

equality is reached by eliminating rapidly oscillating solutions in solving the differential equation (26) as ε → 0.
Actually, this condition means identification of a two-parameter family of solutions of Eq. (26):

w
(n)
0 (z, ε) = a0 + a1z + F(2)(z, ε). (28)
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Here aj are parameters and F(2)(z, ε) is a particular “nonoscillating” solution of the equation. The total number
of the boundary conditions for solutions (28) at the end faces of the beam is two. Hence, traditional boundary
conditions based on the Saint Venant principle should be used at the beam ends: zero mean displacements w

(n)
0

(fixed end face) and zero longitudinal force (free end face).
3. General Case of the Longitudinal–Transverse Bending. Let the beam experience arbitrary

longitudinal and transverse loads p and q simultaneously. The solution cannot be found in the form (17) because
the loads are arbitrary. The load applied can be considered as a superposition of two loads. The first load is the
longitudinal–transverse load of a special type: the longitudinal load p is arbitrary, and the transverse load qp has
the form (27). The second load is a reduced transverse load calculated by the formula qh = q − qp. This is the
case of purely transverse bending, and it is resolved on the basis of representation (1). Because of the linearity
of equations of the elasticity theory and their corollaries, the solutions obtained for the first and second loads are
summed up.
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